1. Fuerzas y movimientos
Para comprender las fuerzas que intervienen y los movimientos que se desarrollan cuando nos desplazamos en bicicleta vamos a repasar los mecanismos de transmisión que se emplean:
Plato o corona: es la rueda dentada o engranaje delantero del sistema de transmisión. Se conecta al pedal a través de la biela; y al piñón, a través de una cadena.
Pedales: La fuerza que con los pies se realiza sobre los pedales, se aplica a través de la biela sobre el plato.
Cadena: Conecta las ruedas dentadas que forman el engranaje, transmitiendo la fuerza y el movimiento desde el plato hacia el piñón.
Piñón: Es la rueda dentada trasera del sistema. A través del eje, transmite la fuerza y el movimiento a la rueda trasera de la bicicleta.
Biela: Es el eje que une el pedal con el plato. Transmite al plato o corona el movimiento y la fuerza que ejerce el pie del ciclista sobre el pedal. Cuanto más larga sea la biela , menor será la fuerza que deberá hacer la persona.
a) Las fuerzas
Son las acciones que se ejercen y que pueden producir equilibrio o cambio en el movimiento.
La fuerza de la gravedad: El peso del ciclista y de la bicicleta es una fuerza que ejerce la Tierra sobre ambos y que actuan verticalmente y hacia abajo produciendo una acción sobre el suelo. P = mg, donde m es la masa en kg y g es la intensidad de la gravedad, aproximadamente 10 Newton/kg. Por ejemplo a un ciclista que con su bicicleta tuviera una masa de 100 kg le corresponderá un peso de 1000 N.
Las fuerzas de reacción: El suelo recibe el peso de todo el sistema y a la vez ejerce fuerzas de reacción sobre las dos ruedas de la bicicleta verticalmente y hacia arriba que equilibran al peso. R1+R2 = P.
Las fuerzas de trasmisión: Cuando el ciclista empuja el pedal, la fuerza se transmite mediante la biela al eje del plato. La cadena se tensa y transmite el movimiento y la fuerza sobre el piñon y este transmite la acción al eje de la rueda trasera.
La fuerza de rozamiento y la fuerza impulsora: La rueda trasera, al girar en sentido horario empuja al suelo hacia atras mediante el rozamiento. La reacción del suelo es la que impulsa a la bicicleta hacia adelante. Como cuando remamos en una barca. Empujamos al agua hacia atrás y está por efecto de reacción nos ayuda a avanzar.
Fuerzas de rozamiento del aire y de los rodamientos: Hemos visto que el rozamiento de la rueda con el suelo ayuda a avanzar. A la vez el contacto entre dos objetos en movimiento relativo produce un rozamiento que actua en contra del movimiento. Para un ciclista la fuerza de rozamiento de mayor importancia que debe evitar es el rozamiento con el aire.
Sistema plato-piñon- Como hemos visto, junto con la cadena sirven de mecanismo para transmitir la fuerza y el movimiento. Con los cambios podemos selecionar un plato y un piñón determinado. Por ejemplo podemos poner el plato con 44 dientes y un piñon con 22 dientes.
Frecuencia de pedaleo-Normalmente suele ser de aproximadamente f= 60 revoluciones o pedaleos por minuto, equivalente a una vuelta por segundo.
Multiplicación- Es la relación entre el número de dientes del plato y del piñón M=N/n = 44/22= 2. Determina cuantas vueltas da el piñon por cada vuelta del plato.
Diametro de la rueda trasera- Sirve para calcular cuanto avanza la bicicleta por cada vuelta de piñón que es la longitud de la circunferencia, En bicicletas de paseo es de 960 mm = 0,96 m. La circunferencia tiene una logintud aproximada, L= 3,14 x d= 3 m
Desarrollo- Distancia que avanza la bicicleta por cada vuelta de plato. Depende M y de L. Se puede calcular multiplicando estas dos magnitudes, D=M x L = 2 x 3 = 6 m
Velocidad- Distancia en metros que recorre la bicicleta cada segundo.
————> v= D x f = 6.1 = 6 m/s que equivale a 22 km/h.
El desarrollo más corto que puede montarse en una bicicleta de montaña hoy por hoy suele ser de 0,64 (plato de 22 dientes y piñón de 34 dientes). Esta relación, nos permite dar una vuelta de rueda con el esfuerzo que requiere dar solo 0,64 vueltas.
En la situación contraria, en una fuerte bajada lo que nos interesa es que tengamos el máximo recorrido con el mínimo esfuerzo. Uno de los desarrollos más largos que existen sería en una bicicleta de carretera equipada con un plato de 53 dientes y un piñón de 11 que supone un desarrollo de 4,81 o sea, que por cada vuelta de pedal la rueda nos da 4,81 vueltas. Un rendimiento impresionante si somos capaces de aportarle esta fuerza muscular.
2) Energías
La energía: mide la capacidad de uns sitema para producir cambios. La energía se puede transmitir de unos cuerpos a otros, se puede transformar y se conserva. Se mide en Julios. La energía necesaria para elevar un cuerpo de 1 kg a una altura de 1 m es de aproximadamente 10 Julios. La energía interna. El ciclista tiene energía interna almacenada en sus músculos. Esta energía procede de los alimentos y está almacenada en sustancias químicas que al transformarse contraen el músulo realizando trabajo. Los alimentos aportan calorias. Una caloria equivale a 4,18 Julios. Una kilocaloria son 1000 calorias. En dietética se habla de Calorias grandes que equivalen a la kilocaloria.
La energía cinética: El ciclista al pedalear sumistra energía de movimiento a la bicicleta que se denomina energía cinética. Se calcula multiplicando la masa en kg por el cuadrado de la velocidad en m/s y diviendo por 2. Supongamos que se mueve a 36 km/h que equivale a 10 m/s.
Ec =100.100/2 = 5000 J
La energía potencial: Está es una forma de energía que aumenta cuando subimos a una cierta altura. Al dejarnos caer por una cuesta se transforma la energía potencial en energía cinética. Ocurre lo contrario cuando, impulsados a una cierta velocidad, ascendemos un cuesta. Se calcula multiplicando la masa en kg por la intensidad de la gravedad g y por la altura h. Ep = m.g.h = 100.10.5 = 5000 J.
La energía mecánica: Es la suma de las energías cinéticas y potenciales de un sistema. El ciclista con su bicileta tiene una energía mecanica
E = Ec + Ep = 5000 + 5000 = 10000 J.
Disipación de la energía: Cuando frenamos observamos que debido al rozamiento se produce calor. Tambien con el rozamiento con el aire y en los rodamientos se produce calor. Este calor se transmite al ambiente y es energía que ya no es útil. Decimos que la energía se ha disipado. Cuando nuestro ciclista frena, pierde los 10000 J de energía mecánica que tenía que pasa al ambiente en forma de calor que se dispersa inmediatamente.
3) La dinamo
Se usa para producir corriente eléctrica de forma autonoma y alimentar la bombilla del faro. La dinamo tiene en su interior un imán que gira al acoplarse a la rueda. Este movimiento del imán produce en un enrollamiento de cobre en forma de bobina una corriente elétrica. El fenómeno se conoce como inducción electromagnética. Animacion y video
jueves, 1 de septiembre de 2011
Energia Que Usa la Bicicleta
Energia Que Usa la Bicicleta
Una bicicleta con transmisión hidráulica es una bicicleta que utiliza un sistema hidráulico para transmitir la energía del ciclista al suelo, en vez de una cadena; Aunque la mayoría de las bicicletas usan cadena, hay otros sistemas como el cardan o la correa con sus ventajas e inconvenientes. No es demasiado raro que algunas bicicletas utilicen frenos hidráulicos; Pero siguen utilizando cadena para la transmisión y las bicicletas hidráulicas son muy raras, La mayoría son montajes caseros.
La transmisión hidráulica
[editar]
La transmisión hidráulica es una innovación que tendría muchas ventajas interesantes; Es un sistema robusto, resistente a las averías, con un mantenimiento mínimo y es una tecnología muy probada en otros ámbitos muy diversos. Sin embargo, si se rompe es difícil de improvisar un arreglo, al contrario que con la cadena. También pasa con otros sistemas como el cardán, que es más difícil de romper, pero también de arreglar.
También es un sistema compacto y sellado, no mancha a menos que se rompa ni produce enganchones en la ropa. Incluso se podría ocultar parte dentro del cuadro de la bicicleta. Ser tan compacto, permite una mayor altura libre al suelo. Una ventaja para salvar obstáculos;La eficiencia es similar a la de una cadena nueva y limpia, pero no le afecta el barro la suciedad y es casi imposible que pierda engrase si no es por una avería.
Una bicicleta con transmisión hidráulica es una bicicleta que utiliza un sistema hidráulico para transmitir la energía del ciclista al suelo, en vez de una cadena; Aunque la mayoría de las bicicletas usan cadena, hay otros sistemas como el cardan o la correa con sus ventajas e inconvenientes. No es demasiado raro que algunas bicicletas utilicen frenos hidráulicos; Pero siguen utilizando cadena para la transmisión y las bicicletas hidráulicas son muy raras, La mayoría son montajes caseros.
La transmisión hidráulica
[editar]
La transmisión hidráulica es una innovación que tendría muchas ventajas interesantes; Es un sistema robusto, resistente a las averías, con un mantenimiento mínimo y es una tecnología muy probada en otros ámbitos muy diversos. Sin embargo, si se rompe es difícil de improvisar un arreglo, al contrario que con la cadena. También pasa con otros sistemas como el cardán, que es más difícil de romper, pero también de arreglar.
También es un sistema compacto y sellado, no mancha a menos que se rompa ni produce enganchones en la ropa. Incluso se podría ocultar parte dentro del cuadro de la bicicleta. Ser tan compacto, permite una mayor altura libre al suelo. Una ventaja para salvar obstáculos;La eficiencia es similar a la de una cadena nueva y limpia, pero no le afecta el barro la suciedad y es casi imposible que pierda engrase si no es por una avería.
viernes, 12 de agosto de 2011
Manivela,Piston,Biela,Cigueñal,Transmision
Manivela
Se llama manivela a la pieza normalmente de hierro, compuesta de dos ramas, una de las cuales se fija por un extremo en el eje de una máquina, de una rueda, etc. y la otra forma el mango que sirve para mover al brazo, la máquina o la rueda. Puede servir también para efectuar la transformación inversa del movimiento circular en movimiento rectilíneo.1 Cuando se incorporan varias manivelas a un eje, éste se denomina cigüeñal.
El mecanismo de biela y manivela es extensamente empleado en diversas máquinas, fundamentalmente para transformar el movimiento alternativo de los pistones de un motor de combustión interna en movimiento rotatorio de otros componentes.
La ecuación de equilibrio de una manivela es:
M = F.D
El esfuerzo que transmite una manivela cumple la ecuación de equilibrio de las palancas; y se ve que en cada uno de los lados de la igualdad se obtiene un valor que resulta de multiplicar una fuerza por su distancia al punto de giro. Este proceso se denomina "momento".
Pistón
Se denomina pistón a uno de los elementos básicos del motor de combustión interna.
Se trata de un émbolo que se ajusta al interior de las paredes del cilindro mediante aros flexibles llamados segmentos o anillos. Efectúa un movimiento alternativo, obligando al fluido que ocupa el cilindro a modificar su presión y volumen o transformando en movimiento el cambio de presión y volumen del fluido.
A través de la articulación de biela y cigüeñal, su movimiento alternativo se transforma en rotativo en este último.Puede formar parte de bombas, compresores y motores. Se construye normalmente en aleación de aluminio.
Los pistones de motores de combustión interna tienen que soportar grandes temperaturas y presiones, además de velocidades y aceleraciones muy altas. Debido a estos se escogen aleaciones que tengan un peso específico bajo para disminuir la energía cinética que se genera en los desplazamientos. También tienen que soportar los esfuerzos producidos por las velocidades y dilataciones. El material más elegido para la fabricación de pistones es el aluminio y suelen utilizarse aleantes como: cobre, silicio, magnesio y manganeso entre otros.
Biela
Se denomina biela a un elemento mecánico que sometido a esfuerzos de tracción o compresión, transmite el movimiento articulando a otras partes de la máquina. En un motor de combustión interna conectan el pistón al cigüeñal.
Actualmente las bielas son un elemento básico en los motores de combustión interna y en los compresores alternativos. Se diseñan con una forma específica para conectarse entre las dos piezas, el pistón y el cigüeñal. Su sección transversal o perfil puede tener forma de H, I o + . El material del que están hechas es de una aleación de acero, titanio o aluminio. En la industria automotor todas son producidas por forjamiento, pero algunos fabricantes de piezas las hacen mediante maquinado
Cigüeñal
Un cigüeñal es un eje acodado, con codos y contrapesos presente en ciertas máquinas que, aplicando el principio del mecanismo de biela - manivela, transforma el movimiento rectilíneo alternativo en circular uniforme y viceversa. En los motores de automoviles el extremo de la biela opuesta al bulón del pistón (cabeza de biela) conecta con la muñequilla, la cual junto con la fuerza ejercida por el pistón sobre el otro extremo (pie de biela) genera el par motor instantáneo. El cigueñal va sujeto en los apoyos, siendo el eje que une los apoyos el eje del motor.
Transmisión
Se denomina transmisión mecánica a un mecanismo encargado de transmitir potencia entre dos o más elementos dentro de una máquina. Son parte fundamental de los elementos u órganos de una máquina, muchas veces clasificado como uno de los dos subgrupos fundamentales de estos elementos de transmisión y elementos de sujeción.
En la gran mayoría de los casos, estas transmisiones se realizan a través de elementos rotantes, ya que la transmisión de energía por rotación ocupa mucho menos espacio que aquella por traslación.Una transmisión mecánica es una forma de intercambiar energía mecánica distinta a las transmisiones neumáticas o hidráulicas, ya que para ejercer su función emplea el movimiento de cuerpos sólidos, como lo son los engranajes y las correas de transmisión.
Típicamente, la transmisión cambia la velocidad de rotación de un eje de entrada, lo que resulta en una velocidad de salida diferente. En la vida diaria se asocian habitualmente las transmisiones con los automóviles. Sin embargo, las transmisiones se emplean en una gran variedad de aplicaciones, algunas de ellas estacionarias. Las transmisiones primitivas comprenden, por ejemplo, reductores y engranajes en ángulo recto en molinos de viento o agua y máquinas de vapor, especialmente para tareas de bombeo, molienda o elevación (norias).
En general, las transmisiones reducen una rotación inadecuada, de alta velocidad y bajo par motor, del eje de salida del impulsor primario a una velocidad más baja con par de giro más alto, o a la inversa. Muchos sistemas, como las transmisiones empleadas en los automóviles, incluyen la capacidad de seleccionar alguna de varias relaciones diferentes. En estos casos, la mayoría de las relaciones (llamadas usualmente "marchas" o "cambios") se emplean para reducir la velocidad de salida del motor e incrementar el par de giro; sin embargo, las relaciones más altas pueden ser sobremarchas que aumentan la velocidad de salida.
También se emplean transmisiones en equipamiento naval, agrícola, industrial, de construcciones y de minería. Adicionalmente a las transmisiones convencionales basadas en engranajes, estos dispositivos suelen emplear transmisiones hidrostáticas y accionadores eléctricos de velocidad ajustable.
Se llama manivela a la pieza normalmente de hierro, compuesta de dos ramas, una de las cuales se fija por un extremo en el eje de una máquina, de una rueda, etc. y la otra forma el mango que sirve para mover al brazo, la máquina o la rueda. Puede servir también para efectuar la transformación inversa del movimiento circular en movimiento rectilíneo.1 Cuando se incorporan varias manivelas a un eje, éste se denomina cigüeñal.
El mecanismo de biela y manivela es extensamente empleado en diversas máquinas, fundamentalmente para transformar el movimiento alternativo de los pistones de un motor de combustión interna en movimiento rotatorio de otros componentes.
La ecuación de equilibrio de una manivela es:
M = F.D
El esfuerzo que transmite una manivela cumple la ecuación de equilibrio de las palancas; y se ve que en cada uno de los lados de la igualdad se obtiene un valor que resulta de multiplicar una fuerza por su distancia al punto de giro. Este proceso se denomina "momento".
Pistón
Se denomina pistón a uno de los elementos básicos del motor de combustión interna.
Se trata de un émbolo que se ajusta al interior de las paredes del cilindro mediante aros flexibles llamados segmentos o anillos. Efectúa un movimiento alternativo, obligando al fluido que ocupa el cilindro a modificar su presión y volumen o transformando en movimiento el cambio de presión y volumen del fluido.
A través de la articulación de biela y cigüeñal, su movimiento alternativo se transforma en rotativo en este último.Puede formar parte de bombas, compresores y motores. Se construye normalmente en aleación de aluminio.
Los pistones de motores de combustión interna tienen que soportar grandes temperaturas y presiones, además de velocidades y aceleraciones muy altas. Debido a estos se escogen aleaciones que tengan un peso específico bajo para disminuir la energía cinética que se genera en los desplazamientos. También tienen que soportar los esfuerzos producidos por las velocidades y dilataciones. El material más elegido para la fabricación de pistones es el aluminio y suelen utilizarse aleantes como: cobre, silicio, magnesio y manganeso entre otros.
Biela
Se denomina biela a un elemento mecánico que sometido a esfuerzos de tracción o compresión, transmite el movimiento articulando a otras partes de la máquina. En un motor de combustión interna conectan el pistón al cigüeñal.
Actualmente las bielas son un elemento básico en los motores de combustión interna y en los compresores alternativos. Se diseñan con una forma específica para conectarse entre las dos piezas, el pistón y el cigüeñal. Su sección transversal o perfil puede tener forma de H, I o + . El material del que están hechas es de una aleación de acero, titanio o aluminio. En la industria automotor todas son producidas por forjamiento, pero algunos fabricantes de piezas las hacen mediante maquinado
Cigüeñal
Un cigüeñal es un eje acodado, con codos y contrapesos presente en ciertas máquinas que, aplicando el principio del mecanismo de biela - manivela, transforma el movimiento rectilíneo alternativo en circular uniforme y viceversa. En los motores de automoviles el extremo de la biela opuesta al bulón del pistón (cabeza de biela) conecta con la muñequilla, la cual junto con la fuerza ejercida por el pistón sobre el otro extremo (pie de biela) genera el par motor instantáneo. El cigueñal va sujeto en los apoyos, siendo el eje que une los apoyos el eje del motor.
Transmisión
Se denomina transmisión mecánica a un mecanismo encargado de transmitir potencia entre dos o más elementos dentro de una máquina. Son parte fundamental de los elementos u órganos de una máquina, muchas veces clasificado como uno de los dos subgrupos fundamentales de estos elementos de transmisión y elementos de sujeción.
En la gran mayoría de los casos, estas transmisiones se realizan a través de elementos rotantes, ya que la transmisión de energía por rotación ocupa mucho menos espacio que aquella por traslación.Una transmisión mecánica es una forma de intercambiar energía mecánica distinta a las transmisiones neumáticas o hidráulicas, ya que para ejercer su función emplea el movimiento de cuerpos sólidos, como lo son los engranajes y las correas de transmisión.
Típicamente, la transmisión cambia la velocidad de rotación de un eje de entrada, lo que resulta en una velocidad de salida diferente. En la vida diaria se asocian habitualmente las transmisiones con los automóviles. Sin embargo, las transmisiones se emplean en una gran variedad de aplicaciones, algunas de ellas estacionarias. Las transmisiones primitivas comprenden, por ejemplo, reductores y engranajes en ángulo recto en molinos de viento o agua y máquinas de vapor, especialmente para tareas de bombeo, molienda o elevación (norias).
En general, las transmisiones reducen una rotación inadecuada, de alta velocidad y bajo par motor, del eje de salida del impulsor primario a una velocidad más baja con par de giro más alto, o a la inversa. Muchos sistemas, como las transmisiones empleadas en los automóviles, incluyen la capacidad de seleccionar alguna de varias relaciones diferentes. En estos casos, la mayoría de las relaciones (llamadas usualmente "marchas" o "cambios") se emplean para reducir la velocidad de salida del motor e incrementar el par de giro; sin embargo, las relaciones más altas pueden ser sobremarchas que aumentan la velocidad de salida.
También se emplean transmisiones en equipamiento naval, agrícola, industrial, de construcciones y de minería. Adicionalmente a las transmisiones convencionales basadas en engranajes, estos dispositivos suelen emplear transmisiones hidrostáticas y accionadores eléctricos de velocidad ajustable.
jueves, 11 de agosto de 2011
jueves, 28 de julio de 2011
Tipos de enegia
Introducción
La energía, como sabemos, es indispensable para la subsistencia del hombre, pero, ¿conocemos su real significado y de que manera afecta nuestra vida diaria?
En este álbum veremos los distintos tipos de energía y lo que es la energía. También sus significados y algunos dibujos, fotos y ejemplos de todos los tipos de energía.
¿Qué es la Energía?
Eficacia, poder, virtud para obrar.
Fuerza de voluntad, vigor y tesón.
Causa capaz de transformarse en trabajo mecánico.
La Energía es un concepto esencial de las ciencias. Desde un punto de vista material complejo de definir. La más básica de sus definiciones indica que se trata de la capacidad que poseen los cuerpos para producir Trabajo, es decir la cantidad de energía que contienen los cuerpos se mide por el trabajo que son capaces de realizar.
La realidad del mundo físico demuestra que la energía, siendo única, puede presentarse bajo diversas Formas capaces de Trasformarse unas a otras.
Fuentes de Energía Renovables
Las energías renovables son aquellas que llegan en forma continua a la Tierra y que a escalas de tiempo real parecen ser inagotables.
Ejemplos:
Energía Hidráulica
Energía Solar
Energía biomasa
Energía Mareomotriz
Fuentes de Energía No Renovables
Son fuentes de energía no renovables aquellas que se encuentran en forma limitada en nuestro planeta y se agotan a medida que se les consume.
Ejemplos:
El carbón.
El petróleo
El Gas Natural
La energía geotérmica
La energía nuclear
Energía solar
Es la energía que llega a la Tierra proveniente de la estrella más cercana a nuestro planeta: El Sol. Esta energía abarca un amplio espectro de Radiación Electromagnética, donde la luz solar es la parte visible de tal espectro.
La energía solar es generada por la llamada Fusión Nuclear que es la fuente de vida de todas las estrellas del Universo.
El hombre puede transformar la energía solar en energía térmica o eléctrica. En el primer caso la energía solar es aprovechada para elevar la temperatura de un fluido, como por ejemplo el agua, y en el segundo caso la energía luminosa del sol transportada por sus fotones de luz, incide sobre la superficie de un material semiconductor (ej: el silicio), produciendo el movimiento de ciertos electrones que componen la estructura atómica del material. Un movimiento de electrones produce una corriente eléctrica que se puede utilizar como fuente de energía de componentes eléctricos o bien electrónicos. Es el caso del principio de funcionamiento de las calculadoras solares.
Ejemplo:
Las que reciben las pantallas solares.
Energía química
Es aquella producto de una combustión (cualquier sustancia que arde o se "quema"), reacción en la cual se combina el oxígeno del aire con la materia del cuerpo que arde. Durante la combustión se producen luz y calor. Cuando las moléculas se rompen se libera energía química.
Ejemplos:
Los alimentos (sobre todo del grupo de los energéticos)
Las pilas o baterías
La gasolina
Energía potencial
La energía potencial es cuando un objeto o cuerpo no está en movimiento ( o sea en reposo)
Ejemplo:
Un columpio (que no está en movimiento)
La energía eléctrica
La energía eléctrica se produce por el movimiento de cargas eléctricas, específicamente electrones (cargas negativas que giran alrededor del núcleo de los átomos) a través de un cable conductor.
Cada vez que se acciona un interruptor, se genera un movimiento de millones de electrones, los que circulan a través de un cable conductor metálico. Las cargas que se desplazan forman parte de los átomos que conforman el cable conductor. Los electrones se mueven desde el enchufe al aparato eléctrico -ya sea lavadora, radio, televisión, etcétera- lo que produce un tránsito de energía entre estos dos puntos.
La energía eléctrica puede hacer funcionar distintos aparatos y se transforma en otras manifestaciones de ella. Por ejemplo, cuando la energía eléctrica llega a una enceradora, se transforma en energía mecánica, calórica y en algunos casos luminosa. Lo mismo se puede observar cuando funciona un secador de pelo o estufa.
¿De dónde se obtiene?
Actualmente, la energía eléctrica del mundo se puede producir a través de distintos medios como por
ejemplo:
Tostadora
Refrigerador
Ventilador
Plancha
Tetera eléctrica
Energía nuclear
La energía nuclear es aquella que se libera como resultado de una reacción nuclear. Se puede obtener por el proceso de Fisión nuclear (división de núcleos atómicos pesados) o bien por Fusión nuclear (unión de núcleos atómicos muy livianos. En las reacciones nucleares se libera una gran cantidad de energía, debido a que parte de la masa de las partículas involucradas en el proceso, se transforma directamente en energía. Lo anterior se puede explicar en base a la relación Masa- Energía producto de la genialidad del gran físico Albert Einstein.
En relación a la liberación de energía, una reacción nuclear es un millar de veces más energética que una reacción química, por ejemplo, la generada por la combustión del combustible fósil del metano.
Fisión Nuclear
Es una reacción nuclear que tiene lugar por la rotura de un núcleo pesado al ser bombardeado por neutrones de cierta velocidad. A raíz de esta división el núcleo se separa en dos fragmentos acompañado de una emisión de radiación, liberación de 2 ó 3 nuevos neutrones y de una gran cantidad de energía (200 MeV) que se transforma finalmente en calor.
Los neutrones que escapan de la fisión, al bajar su energía cinética, se encuentran en condiciones de fisionar otros núcleos pesados, produciendo una Reacción nuclear en cadena. Cabe señalar, que los núcleos atómicos utilizados son de Uranio - 235.
El proceso de la fisión permite el funcionamiento de los Reactores nucleares que actualmente operan en el mundo.
Fusión Nuclear
La fusión nuclear ocurre cuando dos núcleos atómicos muy livianos se unen, formando un núcleo atómico más pesado con mayor estabilidad. Estas reacciones liberan energías tan elevadas que en la actualidad se estudian formas adecuadas para mantener la estabilidad y confinamiento de las reacciones.
La energía necesaria para lograr la unión de los núcleos se puede obtener utilizando energía térmica o bien utilizando aceleradores de partículas . Ambos métodos buscan que la velocidad de las partículas aumente para así vencer las fuerzas de repulsión electrostáticas generadas al momento de la colisión necesaria para la fusión.
Para obtener núcleos de átomos aislados, es decir, separados de su envoltura de electrones, se utilizan gases sobrecalentados que constituyen el denominado Plasma Físico. Este proceso es propio del Sol y las estrellas, pues se tratan de gigantescas estructuras de mezclas de gases calientes atrapadas por las fuerzas de gravedad estelar.
El confinamiento de las partículas se logra utilizando un "Confinamiento Magnético", o bien un "Confinamiento Inercial". El Confinamiento Magnético aprovecha el hecho que el plasma está compuesto por partículas (núcleos) con carga eléctrica. Se sabe que si una de estas partículas interactúa con un Campo Magnético su trayectoria y velocidad cambian, quedando atrapadas por dicho Campo. El Confinamiento Inercial permite comprimir el plasma hasta obtener densidades de 200 a 1000 veces mayor que la de sólidos y líquidos. Cuando se logra la compresión deseada se eleva la temperatura del elemento, lo que facilita aún más el proceso de la fusión.
La fusión nuclear se puede representar por el siguiente esquema y relación de equilibrio:
2H + 2H → 3He + 1n+ 3,2 MeV
Ejemplo:
Bomba Atómica.
Energía Mecánica
Es aquella que el hombre utilizó, en un comienzo, como producto de su propio esfuerzo corporal. Luego, luego utilizo la fuerza animal, para lo que domesticó animales como bueyes, caballos y burros.
La energía mecánica engloba dos tipos de energía; la energía potencial (cuando el cuerpo está en reposo) y la energía cinética (cuando un cuerpo está en movimiento)
Ejemplo:
Tractor.
Energía Mareomotriz
Es la energía obtenida del movimiento de las mareas y las olas del mar. El Movimiento de mareas es generado por la interacción gravitatoria entre la Tierra y la Luna. Tal movimiento se utiliza para traspasar energía cinética a generadores de electricidad.
La gran dificultad para la obtención de este tipo de energía es su alto costo y el establecimiento de un lugar apto geográficamente para confinar grandes masas de agua en recintos naturales.
Ejemplos:
Las olas.
Las mareas.
Energía hidráulica
Es aquella energía obtenida principalmente de las corrientes de agua de los ríos.
El agua de un río se almacena en grandes embalses artificiales que se ubican a gran altura respecto de un nivel de referencia. El agua adquiere una importante cantidad de energía potencial (aquella que poseen los cuerpos que se encuentran a cierta altura). Posteriormente, el agua se deja caer por medio de ductos, por lo tanto toda su energía potencial se forma en energía cinética (aquella que posee un cuerpo gracias a su estado de movimiento). La energía cinética de las caídas de agua se aprovecha, por ejemplo, para mover turbinas generadoras de electricidad, tal es el principio de las Centrales Hidroeléctricas.
Ejemplo:
Centrales Hidroeléctricas
Energía Geotérmica
Energía contenida también en el interior de la Tierra en forma de gases. Al ser extraída se presenta en forma de gases de alta temperatura (fumarolas), en forma de vapor y agua hirviendo (geyser) y en forma de agua caliente (fuentes termales).
Ejemplos:
Las fuentes Termales
Los Geyser
Energía eólica
Esta energía es producida por los vientos generados en la atmósfera terrestre. Se puede transformar en energía eléctrica mediante el uso de turbinas eólicas que basan su funcionamiento en el giro de aspas movidas por los vientos. Bajo el mismo principio se puede utilizar como mecanismo de extracción de aguas subterráneas o de ciertos tipos de molinos para la agricultura.
Al igual que la energía solar se trata de un tipo de energía limpia, la cual sin embargo presenta dificultades, pues no existen en la naturaleza flujos de aire constantes en el tiempo, más bien son dispersos e intermitentes.
Este tipo de energía puede ser de gran utilidad en regiones aisladas, de difícil acceso, con necesidades de energía eléctrica, y cuyos vientos son apreciables en el transcurso del año. Esta descripción se ajusta bien a ciertas zonas del sur de Chile.
Ejemplo:
Tornados
Energía cinética
Energía cinética, energía que un objeto posee debido a su movimiento. La energía cinética depende de la masa y la velocidad del objeto. Las relaciones entre la energía cinética y la energía potencial, y entre los conceptos de fuerza, distancia, aceleración y energía, pueden ilustrarse elevando un objeto y dejándolo caer. Cuando el objeto se levanta desde una superficie se le aplica una fuerza vertical. Al actuar esa fuerza a lo largo de una distancia, se transfiere energía al objeto. La energía asociada a un objeto situado a determinada altura sobre una superficie se denomina energía potencial. Si se deja caer el objeto, la energía potencial se convierte en energía cinética.
Ejemplo:
Un columpio (que está en movimiento)
Energía Calórica
La energía calórica es la energía que se transmiten dos cuerpos (u objetos) con distintas temperaturas.
Ejemplos:
Agua caliente y hielo.
¿Cuáles son los tipos de Energía?
Los tipos de energía son:
Energía Mecánica
Energía Potencial
Energía Cinética
Energía Química
Energía Calórica
Energía Eléctrica
Energía Nuclear
Energía Solar
Energía Geotérmica
10- Energía eólica
11-Energía Hidráulica
12- Fuentes de energía renovables
13- Fuentes de energía no renovable
14- Energía Mareomotriz
Conclusión.
El hombre, para satisfacer sus necesidades, debe realizar una serie de trabajos. A través de la evolución de este, sus necesidades han cambiado, y por consiguiente, las maneras de realizar estos trabajos. Sin duda, entonces, la energía y su dominio es importantísima para la realización de estas tareas ya que sin ellas el ser humano no sobreviviría. Entonces, el desarrollo de las tecnologías de dominio de las energías determinarán el futuro del hombre.
Gracias a la realización de este trabajo hemos aprendido sobre la importancia de la energía, su conocimiento y dominio por parte del ser humano, para la satisfacción de las necesidades de este.
La energía, como sabemos, es indispensable para la subsistencia del hombre, pero, ¿conocemos su real significado y de que manera afecta nuestra vida diaria?
En este álbum veremos los distintos tipos de energía y lo que es la energía. También sus significados y algunos dibujos, fotos y ejemplos de todos los tipos de energía.
¿Qué es la Energía?
Eficacia, poder, virtud para obrar.
Fuerza de voluntad, vigor y tesón.
Causa capaz de transformarse en trabajo mecánico.
La Energía es un concepto esencial de las ciencias. Desde un punto de vista material complejo de definir. La más básica de sus definiciones indica que se trata de la capacidad que poseen los cuerpos para producir Trabajo, es decir la cantidad de energía que contienen los cuerpos se mide por el trabajo que son capaces de realizar.
La realidad del mundo físico demuestra que la energía, siendo única, puede presentarse bajo diversas Formas capaces de Trasformarse unas a otras.
Fuentes de Energía Renovables
Las energías renovables son aquellas que llegan en forma continua a la Tierra y que a escalas de tiempo real parecen ser inagotables.
Ejemplos:
Energía Hidráulica
Energía Solar
Energía biomasa
Energía Mareomotriz
Fuentes de Energía No Renovables
Son fuentes de energía no renovables aquellas que se encuentran en forma limitada en nuestro planeta y se agotan a medida que se les consume.
Ejemplos:
El carbón.
El petróleo
El Gas Natural
La energía geotérmica
La energía nuclear
Energía solar
Es la energía que llega a la Tierra proveniente de la estrella más cercana a nuestro planeta: El Sol. Esta energía abarca un amplio espectro de Radiación Electromagnética, donde la luz solar es la parte visible de tal espectro.
La energía solar es generada por la llamada Fusión Nuclear que es la fuente de vida de todas las estrellas del Universo.
El hombre puede transformar la energía solar en energía térmica o eléctrica. En el primer caso la energía solar es aprovechada para elevar la temperatura de un fluido, como por ejemplo el agua, y en el segundo caso la energía luminosa del sol transportada por sus fotones de luz, incide sobre la superficie de un material semiconductor (ej: el silicio), produciendo el movimiento de ciertos electrones que componen la estructura atómica del material. Un movimiento de electrones produce una corriente eléctrica que se puede utilizar como fuente de energía de componentes eléctricos o bien electrónicos. Es el caso del principio de funcionamiento de las calculadoras solares.
Ejemplo:
Las que reciben las pantallas solares.
Energía química
Es aquella producto de una combustión (cualquier sustancia que arde o se "quema"), reacción en la cual se combina el oxígeno del aire con la materia del cuerpo que arde. Durante la combustión se producen luz y calor. Cuando las moléculas se rompen se libera energía química.
Ejemplos:
Los alimentos (sobre todo del grupo de los energéticos)
Las pilas o baterías
La gasolina
Energía potencial
La energía potencial es cuando un objeto o cuerpo no está en movimiento ( o sea en reposo)
Ejemplo:
Un columpio (que no está en movimiento)
La energía eléctrica
La energía eléctrica se produce por el movimiento de cargas eléctricas, específicamente electrones (cargas negativas que giran alrededor del núcleo de los átomos) a través de un cable conductor.
Cada vez que se acciona un interruptor, se genera un movimiento de millones de electrones, los que circulan a través de un cable conductor metálico. Las cargas que se desplazan forman parte de los átomos que conforman el cable conductor. Los electrones se mueven desde el enchufe al aparato eléctrico -ya sea lavadora, radio, televisión, etcétera- lo que produce un tránsito de energía entre estos dos puntos.
La energía eléctrica puede hacer funcionar distintos aparatos y se transforma en otras manifestaciones de ella. Por ejemplo, cuando la energía eléctrica llega a una enceradora, se transforma en energía mecánica, calórica y en algunos casos luminosa. Lo mismo se puede observar cuando funciona un secador de pelo o estufa.
¿De dónde se obtiene?
Actualmente, la energía eléctrica del mundo se puede producir a través de distintos medios como por
ejemplo:
Tostadora
Refrigerador
Ventilador
Plancha
Tetera eléctrica
Energía nuclear
La energía nuclear es aquella que se libera como resultado de una reacción nuclear. Se puede obtener por el proceso de Fisión nuclear (división de núcleos atómicos pesados) o bien por Fusión nuclear (unión de núcleos atómicos muy livianos. En las reacciones nucleares se libera una gran cantidad de energía, debido a que parte de la masa de las partículas involucradas en el proceso, se transforma directamente en energía. Lo anterior se puede explicar en base a la relación Masa- Energía producto de la genialidad del gran físico Albert Einstein.
En relación a la liberación de energía, una reacción nuclear es un millar de veces más energética que una reacción química, por ejemplo, la generada por la combustión del combustible fósil del metano.
Fisión Nuclear
Es una reacción nuclear que tiene lugar por la rotura de un núcleo pesado al ser bombardeado por neutrones de cierta velocidad. A raíz de esta división el núcleo se separa en dos fragmentos acompañado de una emisión de radiación, liberación de 2 ó 3 nuevos neutrones y de una gran cantidad de energía (200 MeV) que se transforma finalmente en calor.
Los neutrones que escapan de la fisión, al bajar su energía cinética, se encuentran en condiciones de fisionar otros núcleos pesados, produciendo una Reacción nuclear en cadena. Cabe señalar, que los núcleos atómicos utilizados son de Uranio - 235.
El proceso de la fisión permite el funcionamiento de los Reactores nucleares que actualmente operan en el mundo.
Fusión Nuclear
La fusión nuclear ocurre cuando dos núcleos atómicos muy livianos se unen, formando un núcleo atómico más pesado con mayor estabilidad. Estas reacciones liberan energías tan elevadas que en la actualidad se estudian formas adecuadas para mantener la estabilidad y confinamiento de las reacciones.
La energía necesaria para lograr la unión de los núcleos se puede obtener utilizando energía térmica o bien utilizando aceleradores de partículas . Ambos métodos buscan que la velocidad de las partículas aumente para así vencer las fuerzas de repulsión electrostáticas generadas al momento de la colisión necesaria para la fusión.
Para obtener núcleos de átomos aislados, es decir, separados de su envoltura de electrones, se utilizan gases sobrecalentados que constituyen el denominado Plasma Físico. Este proceso es propio del Sol y las estrellas, pues se tratan de gigantescas estructuras de mezclas de gases calientes atrapadas por las fuerzas de gravedad estelar.
El confinamiento de las partículas se logra utilizando un "Confinamiento Magnético", o bien un "Confinamiento Inercial". El Confinamiento Magnético aprovecha el hecho que el plasma está compuesto por partículas (núcleos) con carga eléctrica. Se sabe que si una de estas partículas interactúa con un Campo Magnético su trayectoria y velocidad cambian, quedando atrapadas por dicho Campo. El Confinamiento Inercial permite comprimir el plasma hasta obtener densidades de 200 a 1000 veces mayor que la de sólidos y líquidos. Cuando se logra la compresión deseada se eleva la temperatura del elemento, lo que facilita aún más el proceso de la fusión.
La fusión nuclear se puede representar por el siguiente esquema y relación de equilibrio:
2H + 2H → 3He + 1n+ 3,2 MeV
Ejemplo:
Bomba Atómica.
Energía Mecánica
Es aquella que el hombre utilizó, en un comienzo, como producto de su propio esfuerzo corporal. Luego, luego utilizo la fuerza animal, para lo que domesticó animales como bueyes, caballos y burros.
La energía mecánica engloba dos tipos de energía; la energía potencial (cuando el cuerpo está en reposo) y la energía cinética (cuando un cuerpo está en movimiento)
Ejemplo:
Tractor.
Energía Mareomotriz
Es la energía obtenida del movimiento de las mareas y las olas del mar. El Movimiento de mareas es generado por la interacción gravitatoria entre la Tierra y la Luna. Tal movimiento se utiliza para traspasar energía cinética a generadores de electricidad.
La gran dificultad para la obtención de este tipo de energía es su alto costo y el establecimiento de un lugar apto geográficamente para confinar grandes masas de agua en recintos naturales.
Ejemplos:
Las olas.
Las mareas.
Energía hidráulica
Es aquella energía obtenida principalmente de las corrientes de agua de los ríos.
El agua de un río se almacena en grandes embalses artificiales que se ubican a gran altura respecto de un nivel de referencia. El agua adquiere una importante cantidad de energía potencial (aquella que poseen los cuerpos que se encuentran a cierta altura). Posteriormente, el agua se deja caer por medio de ductos, por lo tanto toda su energía potencial se forma en energía cinética (aquella que posee un cuerpo gracias a su estado de movimiento). La energía cinética de las caídas de agua se aprovecha, por ejemplo, para mover turbinas generadoras de electricidad, tal es el principio de las Centrales Hidroeléctricas.
Ejemplo:
Centrales Hidroeléctricas
Energía Geotérmica
Energía contenida también en el interior de la Tierra en forma de gases. Al ser extraída se presenta en forma de gases de alta temperatura (fumarolas), en forma de vapor y agua hirviendo (geyser) y en forma de agua caliente (fuentes termales).
Ejemplos:
Las fuentes Termales
Los Geyser
Energía eólica
Esta energía es producida por los vientos generados en la atmósfera terrestre. Se puede transformar en energía eléctrica mediante el uso de turbinas eólicas que basan su funcionamiento en el giro de aspas movidas por los vientos. Bajo el mismo principio se puede utilizar como mecanismo de extracción de aguas subterráneas o de ciertos tipos de molinos para la agricultura.
Al igual que la energía solar se trata de un tipo de energía limpia, la cual sin embargo presenta dificultades, pues no existen en la naturaleza flujos de aire constantes en el tiempo, más bien son dispersos e intermitentes.
Este tipo de energía puede ser de gran utilidad en regiones aisladas, de difícil acceso, con necesidades de energía eléctrica, y cuyos vientos son apreciables en el transcurso del año. Esta descripción se ajusta bien a ciertas zonas del sur de Chile.
Ejemplo:
Tornados
Energía cinética
Energía cinética, energía que un objeto posee debido a su movimiento. La energía cinética depende de la masa y la velocidad del objeto. Las relaciones entre la energía cinética y la energía potencial, y entre los conceptos de fuerza, distancia, aceleración y energía, pueden ilustrarse elevando un objeto y dejándolo caer. Cuando el objeto se levanta desde una superficie se le aplica una fuerza vertical. Al actuar esa fuerza a lo largo de una distancia, se transfiere energía al objeto. La energía asociada a un objeto situado a determinada altura sobre una superficie se denomina energía potencial. Si se deja caer el objeto, la energía potencial se convierte en energía cinética.
Ejemplo:
Un columpio (que está en movimiento)
Energía Calórica
La energía calórica es la energía que se transmiten dos cuerpos (u objetos) con distintas temperaturas.
Ejemplos:
Agua caliente y hielo.
¿Cuáles son los tipos de Energía?
Los tipos de energía son:
Energía Mecánica
Energía Potencial
Energía Cinética
Energía Química
Energía Calórica
Energía Eléctrica
Energía Nuclear
Energía Solar
Energía Geotérmica
10- Energía eólica
11-Energía Hidráulica
12- Fuentes de energía renovables
13- Fuentes de energía no renovable
14- Energía Mareomotriz
Conclusión.
El hombre, para satisfacer sus necesidades, debe realizar una serie de trabajos. A través de la evolución de este, sus necesidades han cambiado, y por consiguiente, las maneras de realizar estos trabajos. Sin duda, entonces, la energía y su dominio es importantísima para la realización de estas tareas ya que sin ellas el ser humano no sobreviviría. Entonces, el desarrollo de las tecnologías de dominio de las energías determinarán el futuro del hombre.
Gracias a la realización de este trabajo hemos aprendido sobre la importancia de la energía, su conocimiento y dominio por parte del ser humano, para la satisfacción de las necesidades de este.
Aplicaciones de la rueda
La rueda es un disco con un orificio central por el que penetra un eje que le guía en el movimiento y le sirve de sustento.
La parte operativa de la rueda es la periferia del disco, que se recubre con materiales o terminaciones de diversos tipos con el fin de adaptarla a la utilidad correspondiente. Algunas de las ruedas más empleadas son:
Rueda dentada, empleada principalmente para la transmisión del movimiento giratorio entre ejes.
Rueda de transporte, empleada para reducir el rozamiento con el suelo. Unas muy empleadas con las de cámara de aire.
Polea, muy empleada tanto para la transmisión de movimientos como para la reducción del esfuerzo al elevar o mover pesos.
Turbinas (rueda de palas), empleadas para la obtención de un movimiento giratorio a partir del movimiento de un fluido (agua, aire, aceíte...)
Composición de la rueda
Desde el punto de vista tecnológico, la rueda es un operador dependiente. Nunca puede usarse sola y siempre ha de ir acompañada de, al menos, un eje (que le guía y sirve de sustento) y de un soporte o armadura (que es el operador que controla la posición del eje y sirve de sotén a todo el conjunto).
El eje es una barra, normalmente cilíndrica, que guía el movimiento giratorio de la rueda. Dependiendo del diseño adoptado, se pueden presentar dos tipos de ejes:
Ejes que giran solidarios con la rueda (p.e. las carretillas), en cuyo caso el soporte es el que guía el movimiento. Si el eje se emplea para la transmisión del movimiento giratorio entre la rueda y otro operador (o viceversa), entonces recibe el nombre de árbol.
Ejes que estan unidos directamente al soporte (caso de las bicicletas, patinetes...), en cuyo caso la rueda gira libremente sobre el eje, que es el que le guía en el movimiento.
El soporte es un operador cuya misión es mantener al eje solidario con la máquina. En muchas aplicaciones suele tener forma de horquilla (patinetes, bicicletas, carros...).
Además, para reducir el rozamiento entre el eje y el soporte (o entre la rueda y el eje si este permanece fijo), se suele recurrir al empleo de casquillos o de rodamientos (de bolas, rodillos o agujas).
Un poco de historia
Es importante apuntar que aunque el conocimiento y uso de la rueda como operador aplicado al transporte suele ser un indicador de clasificación cultural, existieron culturas que llegaron a un alto nivel técnico y artístico desconociendo el uso práctico de la rueda (caso de las culturas preeconlombinas).
Desde el punto de vista técnico se supone que la rueda evolucionó a partir de un rodillo al que se le había colocado un eje a través de un agujero central, y aunque no existen pruebas concluyentes, se supone que rodillos de madera fabricados a partir de troncos de árbol ya fueron empleados por los egipciós hacia el 3500 a.C para el transporte de cargas pesadas.
No obstante, parece ser que la primera aplicación de la rueda como tal correspode a los tornos de alfarería (hacia el 3300 a. de C. en el oriente medio), en forma de sencillo disco de madera montado sobre un cono giratorio impulsado a mano.
Hacia el 3200 a. de C. empieza a aplicarse como elemento de transporte (en forma de rueda maciza de piedra que formaba cuerpo con ejes de amdera y se sujetaba a la carreta por medio de tiras de cuero) formando parte de carros de tracción animal.
Hacia el 2900 a. de C. se aplicó en Sumeria para la molienda de trigo (molino de ruedas).
Hacia el 1500 a. de C. empezó a emplearse como elemento motor accionado por la fuerza muscular del hombre (rueda de varios metros de diámetro por la que se mueven varios hombres haciéndola girar).
Es posible ha hacia el 1500 a. de C. ya se empleara la polea (en forma de polea simple) en Mesopotamia y Egipto.
Hacia el 260 a. de C. ya se empleaban las ruedas hidráulicas (norias) como elemento que aprovecha el movimiento lineal dela gua de los ríos para producir un movimiento firatorio que sirve como fuerza motriz.
Hacia el 250 a. de C. ya se usaban las ruedas dentadas (engranajes) para la trasmisión de movimientos rotativos entre ejes separados (reloj hidráulico de Ctebiso).
Hacia el 900 empiezan las ruedas eólicas (aprovechan la fuerza del viento para producir un movimiento giratorio) para el accionamiento de molinos de piedra en Pekín y Persia.
Las ruedas se emplean en multitud de aplicaciones, algunas muy usuales son:
Facilitar el desplazamiento de objetos reduciendo el rozamiento entre superficies (tren de rodadura, rodillo, rodamiento); como en carretillas, coches, bicicletas, patinetes, pasillos rodantes...
Obtener un movimiento rotativo en un eje a partir del movimiento del agua (rueda de palas, noria, turbina o rodete); como en contadores de agua, molinos de agua, norias de regadío, centrales hidroeléctricas, turbinas...
Transmitir un movimiento giratorio entre ejes (polea, piñón, ruedas de fricción...); como en lavadoras, neveras, bicicletas, motos, motores de automóvil, taladros, tocadiscos...
Reducir el esfuerzo necesario para elevar una masa (polea de cable, polea móvil, polipasto...); como en pozos de agua, grúas, ascensores...
Transformar en giratorio otros movimientos o viceversa (excéntrica, leva, torno); como en piedras de afilar, máquinas de coser, ruedas de timón, programadores de lavadora, cabrestantes...
La parte operativa de la rueda es la periferia del disco, que se recubre con materiales o terminaciones de diversos tipos con el fin de adaptarla a la utilidad correspondiente. Algunas de las ruedas más empleadas son:
Rueda dentada, empleada principalmente para la transmisión del movimiento giratorio entre ejes.
Rueda de transporte, empleada para reducir el rozamiento con el suelo. Unas muy empleadas con las de cámara de aire.
Polea, muy empleada tanto para la transmisión de movimientos como para la reducción del esfuerzo al elevar o mover pesos.
Turbinas (rueda de palas), empleadas para la obtención de un movimiento giratorio a partir del movimiento de un fluido (agua, aire, aceíte...)
Composición de la rueda
Desde el punto de vista tecnológico, la rueda es un operador dependiente. Nunca puede usarse sola y siempre ha de ir acompañada de, al menos, un eje (que le guía y sirve de sustento) y de un soporte o armadura (que es el operador que controla la posición del eje y sirve de sotén a todo el conjunto).
El eje es una barra, normalmente cilíndrica, que guía el movimiento giratorio de la rueda. Dependiendo del diseño adoptado, se pueden presentar dos tipos de ejes:
Ejes que giran solidarios con la rueda (p.e. las carretillas), en cuyo caso el soporte es el que guía el movimiento. Si el eje se emplea para la transmisión del movimiento giratorio entre la rueda y otro operador (o viceversa), entonces recibe el nombre de árbol.
Ejes que estan unidos directamente al soporte (caso de las bicicletas, patinetes...), en cuyo caso la rueda gira libremente sobre el eje, que es el que le guía en el movimiento.
El soporte es un operador cuya misión es mantener al eje solidario con la máquina. En muchas aplicaciones suele tener forma de horquilla (patinetes, bicicletas, carros...).
Además, para reducir el rozamiento entre el eje y el soporte (o entre la rueda y el eje si este permanece fijo), se suele recurrir al empleo de casquillos o de rodamientos (de bolas, rodillos o agujas).
Un poco de historia
Es importante apuntar que aunque el conocimiento y uso de la rueda como operador aplicado al transporte suele ser un indicador de clasificación cultural, existieron culturas que llegaron a un alto nivel técnico y artístico desconociendo el uso práctico de la rueda (caso de las culturas preeconlombinas).
Desde el punto de vista técnico se supone que la rueda evolucionó a partir de un rodillo al que se le había colocado un eje a través de un agujero central, y aunque no existen pruebas concluyentes, se supone que rodillos de madera fabricados a partir de troncos de árbol ya fueron empleados por los egipciós hacia el 3500 a.C para el transporte de cargas pesadas.
No obstante, parece ser que la primera aplicación de la rueda como tal correspode a los tornos de alfarería (hacia el 3300 a. de C. en el oriente medio), en forma de sencillo disco de madera montado sobre un cono giratorio impulsado a mano.
Hacia el 3200 a. de C. empieza a aplicarse como elemento de transporte (en forma de rueda maciza de piedra que formaba cuerpo con ejes de amdera y se sujetaba a la carreta por medio de tiras de cuero) formando parte de carros de tracción animal.
Hacia el 2900 a. de C. se aplicó en Sumeria para la molienda de trigo (molino de ruedas).
Hacia el 1500 a. de C. empezó a emplearse como elemento motor accionado por la fuerza muscular del hombre (rueda de varios metros de diámetro por la que se mueven varios hombres haciéndola girar).
Es posible ha hacia el 1500 a. de C. ya se empleara la polea (en forma de polea simple) en Mesopotamia y Egipto.
Hacia el 260 a. de C. ya se empleaban las ruedas hidráulicas (norias) como elemento que aprovecha el movimiento lineal dela gua de los ríos para producir un movimiento firatorio que sirve como fuerza motriz.
Hacia el 250 a. de C. ya se usaban las ruedas dentadas (engranajes) para la trasmisión de movimientos rotativos entre ejes separados (reloj hidráulico de Ctebiso).
Hacia el 900 empiezan las ruedas eólicas (aprovechan la fuerza del viento para producir un movimiento giratorio) para el accionamiento de molinos de piedra en Pekín y Persia.
Las ruedas se emplean en multitud de aplicaciones, algunas muy usuales son:
Facilitar el desplazamiento de objetos reduciendo el rozamiento entre superficies (tren de rodadura, rodillo, rodamiento); como en carretillas, coches, bicicletas, patinetes, pasillos rodantes...
Obtener un movimiento rotativo en un eje a partir del movimiento del agua (rueda de palas, noria, turbina o rodete); como en contadores de agua, molinos de agua, norias de regadío, centrales hidroeléctricas, turbinas...
Transmitir un movimiento giratorio entre ejes (polea, piñón, ruedas de fricción...); como en lavadoras, neveras, bicicletas, motos, motores de automóvil, taladros, tocadiscos...
Reducir el esfuerzo necesario para elevar una masa (polea de cable, polea móvil, polipasto...); como en pozos de agua, grúas, ascensores...
Transformar en giratorio otros movimientos o viceversa (excéntrica, leva, torno); como en piedras de afilar, máquinas de coser, ruedas de timón, programadores de lavadora, cabrestantes...
viernes, 22 de julio de 2011
El principio de Arquímedes es un principio físico que afirma que: «Un cuerpo total o parcialmente sumergido en un fluido en reposo, recibe un empuje de abajo hacia arriba igual al peso del volumen del fluido que desaloja». Esta fuerza1 recibe el nombre de empuje hidrostático o de Arquímedes, y se mide en newtons (en el SI). El principio de Arquímedes se formula así:
e=M g=Pf g V
Donde E es el empuje , ρf es la densidad del fluido, V el «volumen de fluido desplazado» por algún cuerpo sumergido parcial o totalmente en el mismo, g la aceleración de la gravedad y m la masa, de este modo, el empuje depende de la densidad del fluido, del volumen del cuerpo y de la gravedad existente en ese lugar. El empuje (en condiciones normales2 y descrito de modo simplificado3 ) actúa verticalmente hacia arriba y está aplicado en el centro de gravedad del fluido desalojado por el cuerpo; este punto recibe el nombre de centro de carena.
e=M g=Pf g V
Donde E es el empuje , ρf es la densidad del fluido, V el «volumen de fluido desplazado» por algún cuerpo sumergido parcial o totalmente en el mismo, g la aceleración de la gravedad y m la masa, de este modo, el empuje depende de la densidad del fluido, del volumen del cuerpo y de la gravedad existente en ese lugar. El empuje (en condiciones normales2 y descrito de modo simplificado3 ) actúa verticalmente hacia arriba y está aplicado en el centro de gravedad del fluido desalojado por el cuerpo; este punto recibe el nombre de centro de carena.
¿Porque un avion vuela?
Son más pesados que el aire y sin embargo vuelan. A qué se debe? En este capítulo veremos las leyes básicas de la aerodinámica que posibilitan el vuelo tanto a nuestros modelos como a un Jumbo que puede llegar a pesar hasta 350 toneladas a la hora del despegue.
Para que un objeto permanezca en vuelo, simplemente la fuerza vertical que lo eleve tendrá que ser igual o mayor que la fuerza de su peso.Cómo se crea esa fuerza vertical que sostendrá al avión? El ala tiene una forma de sección especial, el perfil alar, que al paso del aire crea la fuerza de sustentación. La curvatura de este perfil obliga al aire pasar a mayor velocidad por encima que por debajo causando una diferencia de presiones, más baja arriba que abajo, con lo cual el ala tenderá a subir.Como hemos visto, la condición para que esto ocurra es que el aire pase a una cierta velocidad por el ala. Cuanto mayor la velocidad mayor la sustentación (dentro de unos límites físicos, claro está). Asi que será necesario impulsar el avión hacia delante con una fuerza de tracción, en contra de la resistencia al aire, para que el ala pueda crear la fuerza de sustentación necesaria para vencer el peso del avión y pueda elevarse. La fuerza de sustentación siempre será perpendicular al perfil alar.Y esto en fondo es todo el secreto... Cuando la tracción, la resistencia al aire, la sustentación y el peso están en equilibrio, el avión volará a una velocidad y altura constante.
Como ya se mencionó más arriba, la velocidad con la que pasa el aire por el ala, influye la sustentación. A su vez, para que el avión se eleve, la sustentación deberá de ser mayor que el peso. Ahora se entiende que es importante que el avión sea lo más ligero posible. Asi la potencia de tracción podrá ser menor. Por otro lado, cuanto más aerodinámica sea la forma del avión, menos resistencia al aire tendrá y menos potencia se derrochará.
Para que un objeto permanezca en vuelo, simplemente la fuerza vertical que lo eleve tendrá que ser igual o mayor que la fuerza de su peso.Cómo se crea esa fuerza vertical que sostendrá al avión? El ala tiene una forma de sección especial, el perfil alar, que al paso del aire crea la fuerza de sustentación. La curvatura de este perfil obliga al aire pasar a mayor velocidad por encima que por debajo causando una diferencia de presiones, más baja arriba que abajo, con lo cual el ala tenderá a subir.Como hemos visto, la condición para que esto ocurra es que el aire pase a una cierta velocidad por el ala. Cuanto mayor la velocidad mayor la sustentación (dentro de unos límites físicos, claro está). Asi que será necesario impulsar el avión hacia delante con una fuerza de tracción, en contra de la resistencia al aire, para que el ala pueda crear la fuerza de sustentación necesaria para vencer el peso del avión y pueda elevarse. La fuerza de sustentación siempre será perpendicular al perfil alar.Y esto en fondo es todo el secreto... Cuando la tracción, la resistencia al aire, la sustentación y el peso están en equilibrio, el avión volará a una velocidad y altura constante.
Como ya se mencionó más arriba, la velocidad con la que pasa el aire por el ala, influye la sustentación. A su vez, para que el avión se eleve, la sustentación deberá de ser mayor que el peso. Ahora se entiende que es importante que el avión sea lo más ligero posible. Asi la potencia de tracción podrá ser menor. Por otro lado, cuanto más aerodinámica sea la forma del avión, menos resistencia al aire tendrá y menos potencia se derrochará.
¿Porque un barco flota?
Un objeto que esta hueco tiene poca densidad, porque en su mayoría esta lleno de aire.
Con el barco ocurre lo mismo, aunque sea de hierro flota en el agua a causa del aire que tiene dentro.
En el caso de que se le haga un agujero en el casco, el agua entrara expulsando el aire hacia fuera, entonces la densidad de barco será mayor que la del agua y el barco se hundirá.
Hay muchos tipos de barcos y se utilizan para distintos objetivos.
Un crucero es un buque de guerra, aunque depende del contexto, ya que también es conocido como un viaje de placer en un barco de lujo.
Con el barco ocurre lo mismo, aunque sea de hierro flota en el agua a causa del aire que tiene dentro.
En el caso de que se le haga un agujero en el casco, el agua entrara expulsando el aire hacia fuera, entonces la densidad de barco será mayor que la del agua y el barco se hundirá.
Hay muchos tipos de barcos y se utilizan para distintos objetivos.
Un crucero es un buque de guerra, aunque depende del contexto, ya que también es conocido como un viaje de placer en un barco de lujo.
jueves, 21 de julio de 2011
Palancas en el cuerpo humano
La palanca, una de las cinco grandes máquinas simples de la Antigüedad, ha sido y continúa siendo un componente básico en nuestros ingenios mecánicos, permitiéndonos ahorrar multitud de esfuerzo en tareas cotidianas. Las palancas nos permiten obtener lo que llamamos una ventaja mecánica, bien sea multiplicando nuestra fuerza, ampliando la velocidad del movimiento o aumentando nuestra precisión.
Una palanca es una barra, que en el caso ideal es de masa despreciable, y que se sostiene sobre un punto de apoyo (también denominado fulcro). Al ejercer una fuerza en un punto de la palanca, ésta se transmite a través de ella, recibiéndose modificada en otro punto. Esta fuerza transmitida y modificada por la palanca se utiliza para vencer una resistencia. En función de la situación del punto de apoyo, del punto de aplicación de la fuerza ejercida y del punto en el que la resistencia es vencida, existen tres tipos de palancas.
Pero las palancas no están sólo en los artefactos construidos por el hombre, podemos encontrarlas por doquier en la naturaleza. Y como no, no podían faltar en una de las máquinas más perfectas que existen: el cuerpo humano. De hecho, gran parte del movimiento de nuestro cuerpo puede explicarse a través del trabajo conjunto de huesos, músculos y articulaciones, que actúan como simples palancas. Veámoslo.
1. PALANCAS DE PRIMER GÉNERO
En el movimiento de la cabeza cuando asentimos, encontramos una palanca de primer grado.
Al desplazar la cabeza hacia atrás, el cráneo pivota sobre la vértebra atlas (el punto de apoyo).Los músculos trapecio y esternocleidomastoideo, realizan la fuerza necesaria para mover el peso de la cabeza.
Otro ejemplo lo encontramos al realizar algo tan cotidiano como llamar a una puerta.
El músculo que trabaja es el triceps que como puedes ver arriba se inserta en el antebrazo por detrás del codo. Así el triceps se contrae, haciendo que el antebrazo pivote sobre el codo, moviendo el peso del antebrazo y alejándolo de nuestro cuerpo. Es el mismo movimiento que cuando se lanza un tiro libre en baloncesto.
2. PALANCAS DE SEGUNDO GÉNERO
Las encontramos al caminar, un movimiento tan genuinamente humano. Al andar, se ponen en juego distintos músculos que accionan palancas de 2º grado, que multiplican la fuerza para que podamos desplazar el peso de nuestro cuerpo.
Cuñas: Hachas, clavos, etc.
La cuña es una máquina simple que consiste en una pieza de madera o de metal terminada en ángulo diedro muy agudo. Técnicamente es un doble plano inclinado portátil. Sirve para hender o dividir cuerpos sólidos, para ajustar o apretar uno con otro, para calzarlos o para llenar alguna raja o hueco.
El funcionamiento de la cuña responde al mismo principio que el del plano inclinado. Al moverse en la dirección de su extremo afilado, la cuña genera grandes fuerzas en sentido perpendicular a la dirección del movimiento. .
Ejemplos muy claros de cuñas son hachas, cinceles y clavos aunque, en general, cualquier herramienta afilada, como el cuchillo o el filo de las tijeras, puede actuar como una cuña.
viernes, 15 de julio de 2011
jueves, 14 de julio de 2011
viernes, 3 de junio de 2011
jueves, 2 de junio de 2011
viernes, 27 de mayo de 2011
Suscribirse a:
Entradas (Atom)